Copied to
clipboard

?

G = C42.168D10order 320 = 26·5

168th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.168D10, C10.792+ (1+4), C41D48D5, C202D438C2, (D4×Dic5)⋊36C2, (C2×D4).179D10, C42⋊D524C2, C20.6Q823C2, Dic5⋊D438C2, C20.134(C4○D4), C4.40(D42D5), (C2×C10).263C24, (C2×C20).637C23, (C4×C20).205C22, C2.83(D46D10), C23.69(C22×D5), (D4×C10).215C22, C4⋊Dic5.249C22, (C22×C10).77C23, C22.284(C23×D5), C23.D5.74C22, C23.18D1027C2, C57(C22.34C24), (C2×Dic5).137C23, (C4×Dic5).164C22, C10.D4.87C22, (C22×D5).117C23, D10⋊C4.150C22, (C22×Dic5).159C22, (C5×C41D4)⋊10C2, C10.98(C2×C4○D4), C2.62(C2×D42D5), (C2×C4×D5).149C22, (C2×C4).215(C22×D5), (C2×C5⋊D4).79C22, SmallGroup(320,1391)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.168D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.168D10
C5C2×C10 — C42.168D10

Subgroups: 846 in 240 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2 [×2], C2 [×5], C4 [×2], C4 [×9], C22, C22 [×15], C5, C2×C4, C2×C4 [×2], C2×C4 [×13], D4 [×12], C23 [×4], C23, D5, C10, C10 [×2], C10 [×4], C42, C42, C22⋊C4 [×10], C4⋊C4 [×8], C22×C4 [×5], C2×D4 [×6], C2×D4 [×4], Dic5 [×7], C20 [×2], C20 [×2], D10 [×3], C2×C10, C2×C10 [×12], C42⋊C2, C4×D4 [×2], C4⋊D4 [×6], C22.D4 [×4], C42.C2, C41D4, C4×D5 [×2], C2×Dic5, C2×Dic5 [×6], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20, C2×C20 [×2], C5×D4 [×8], C22×D5, C22×C10 [×4], C22.34C24, C4×Dic5, C10.D4 [×6], C4⋊Dic5 [×2], D10⋊C4 [×2], C23.D5 [×8], C4×C20, C2×C4×D5, C22×Dic5 [×4], C2×C5⋊D4 [×4], D4×C10 [×6], C20.6Q8, C42⋊D5, D4×Dic5 [×2], C23.18D10 [×4], C202D4 [×2], Dic5⋊D4 [×4], C5×C41D4, C42.168D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D5 [×7], C22.34C24, D42D5 [×2], C23×D5, C2×D42D5, D46D10 [×2], C42.168D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=b2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 108 33 113)(2 114 34 109)(3 110 35 115)(4 116 36 101)(5 102 37 117)(6 118 38 103)(7 104 39 119)(8 120 40 105)(9 106 31 111)(10 112 32 107)(11 98 58 133)(12 134 59 99)(13 100 60 135)(14 136 51 91)(15 92 52 137)(16 138 53 93)(17 94 54 139)(18 140 55 95)(19 96 56 131)(20 132 57 97)(21 90 143 61)(22 62 144 81)(23 82 145 63)(24 64 146 83)(25 84 147 65)(26 66 148 85)(27 86 149 67)(28 68 150 87)(29 88 141 69)(30 70 142 89)(41 122 75 155)(42 156 76 123)(43 124 77 157)(44 158 78 125)(45 126 79 159)(46 160 80 127)(47 128 71 151)(48 152 72 129)(49 130 73 153)(50 154 74 121)
(1 49 13 66)(2 67 14 50)(3 41 15 68)(4 69 16 42)(5 43 17 70)(6 61 18 44)(7 45 19 62)(8 63 20 46)(9 47 11 64)(10 65 12 48)(21 140 158 118)(22 119 159 131)(23 132 160 120)(24 111 151 133)(25 134 152 112)(26 113 153 135)(27 136 154 114)(28 115 155 137)(29 138 156 116)(30 117 157 139)(31 71 58 83)(32 84 59 72)(33 73 60 85)(34 86 51 74)(35 75 52 87)(36 88 53 76)(37 77 54 89)(38 90 55 78)(39 79 56 81)(40 82 57 80)(91 121 109 149)(92 150 110 122)(93 123 101 141)(94 142 102 124)(95 125 103 143)(96 144 104 126)(97 127 105 145)(98 146 106 128)(99 129 107 147)(100 148 108 130)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 13 12)(2 11 14 9)(3 8 15 20)(4 19 16 7)(5 6 17 18)(21 124 158 142)(22 141 159 123)(23 122 160 150)(24 149 151 121)(25 130 152 148)(26 147 153 129)(27 128 154 146)(28 145 155 127)(29 126 156 144)(30 143 157 125)(31 34 58 51)(32 60 59 33)(35 40 52 57)(36 56 53 39)(37 38 54 55)(41 80 68 82)(42 81 69 79)(43 78 70 90)(44 89 61 77)(45 76 62 88)(46 87 63 75)(47 74 64 86)(48 85 65 73)(49 72 66 84)(50 83 67 71)(91 106 109 98)(92 97 110 105)(93 104 101 96)(94 95 102 103)(99 108 107 100)(111 114 133 136)(112 135 134 113)(115 120 137 132)(116 131 138 119)(117 118 139 140)

G:=sub<Sym(160)| (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,98,58,133)(12,134,59,99)(13,100,60,135)(14,136,51,91)(15,92,52,137)(16,138,53,93)(17,94,54,139)(18,140,55,95)(19,96,56,131)(20,132,57,97)(21,90,143,61)(22,62,144,81)(23,82,145,63)(24,64,146,83)(25,84,147,65)(26,66,148,85)(27,86,149,67)(28,68,150,87)(29,88,141,69)(30,70,142,89)(41,122,75,155)(42,156,76,123)(43,124,77,157)(44,158,78,125)(45,126,79,159)(46,160,80,127)(47,128,71,151)(48,152,72,129)(49,130,73,153)(50,154,74,121), (1,49,13,66)(2,67,14,50)(3,41,15,68)(4,69,16,42)(5,43,17,70)(6,61,18,44)(7,45,19,62)(8,63,20,46)(9,47,11,64)(10,65,12,48)(21,140,158,118)(22,119,159,131)(23,132,160,120)(24,111,151,133)(25,134,152,112)(26,113,153,135)(27,136,154,114)(28,115,155,137)(29,138,156,116)(30,117,157,139)(31,71,58,83)(32,84,59,72)(33,73,60,85)(34,86,51,74)(35,75,52,87)(36,88,53,76)(37,77,54,89)(38,90,55,78)(39,79,56,81)(40,82,57,80)(91,121,109,149)(92,150,110,122)(93,123,101,141)(94,142,102,124)(95,125,103,143)(96,144,104,126)(97,127,105,145)(98,146,106,128)(99,129,107,147)(100,148,108,130), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,13,12)(2,11,14,9)(3,8,15,20)(4,19,16,7)(5,6,17,18)(21,124,158,142)(22,141,159,123)(23,122,160,150)(24,149,151,121)(25,130,152,148)(26,147,153,129)(27,128,154,146)(28,145,155,127)(29,126,156,144)(30,143,157,125)(31,34,58,51)(32,60,59,33)(35,40,52,57)(36,56,53,39)(37,38,54,55)(41,80,68,82)(42,81,69,79)(43,78,70,90)(44,89,61,77)(45,76,62,88)(46,87,63,75)(47,74,64,86)(48,85,65,73)(49,72,66,84)(50,83,67,71)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,133,136)(112,135,134,113)(115,120,137,132)(116,131,138,119)(117,118,139,140)>;

G:=Group( (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,98,58,133)(12,134,59,99)(13,100,60,135)(14,136,51,91)(15,92,52,137)(16,138,53,93)(17,94,54,139)(18,140,55,95)(19,96,56,131)(20,132,57,97)(21,90,143,61)(22,62,144,81)(23,82,145,63)(24,64,146,83)(25,84,147,65)(26,66,148,85)(27,86,149,67)(28,68,150,87)(29,88,141,69)(30,70,142,89)(41,122,75,155)(42,156,76,123)(43,124,77,157)(44,158,78,125)(45,126,79,159)(46,160,80,127)(47,128,71,151)(48,152,72,129)(49,130,73,153)(50,154,74,121), (1,49,13,66)(2,67,14,50)(3,41,15,68)(4,69,16,42)(5,43,17,70)(6,61,18,44)(7,45,19,62)(8,63,20,46)(9,47,11,64)(10,65,12,48)(21,140,158,118)(22,119,159,131)(23,132,160,120)(24,111,151,133)(25,134,152,112)(26,113,153,135)(27,136,154,114)(28,115,155,137)(29,138,156,116)(30,117,157,139)(31,71,58,83)(32,84,59,72)(33,73,60,85)(34,86,51,74)(35,75,52,87)(36,88,53,76)(37,77,54,89)(38,90,55,78)(39,79,56,81)(40,82,57,80)(91,121,109,149)(92,150,110,122)(93,123,101,141)(94,142,102,124)(95,125,103,143)(96,144,104,126)(97,127,105,145)(98,146,106,128)(99,129,107,147)(100,148,108,130), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,13,12)(2,11,14,9)(3,8,15,20)(4,19,16,7)(5,6,17,18)(21,124,158,142)(22,141,159,123)(23,122,160,150)(24,149,151,121)(25,130,152,148)(26,147,153,129)(27,128,154,146)(28,145,155,127)(29,126,156,144)(30,143,157,125)(31,34,58,51)(32,60,59,33)(35,40,52,57)(36,56,53,39)(37,38,54,55)(41,80,68,82)(42,81,69,79)(43,78,70,90)(44,89,61,77)(45,76,62,88)(46,87,63,75)(47,74,64,86)(48,85,65,73)(49,72,66,84)(50,83,67,71)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,133,136)(112,135,134,113)(115,120,137,132)(116,131,138,119)(117,118,139,140) );

G=PermutationGroup([(1,108,33,113),(2,114,34,109),(3,110,35,115),(4,116,36,101),(5,102,37,117),(6,118,38,103),(7,104,39,119),(8,120,40,105),(9,106,31,111),(10,112,32,107),(11,98,58,133),(12,134,59,99),(13,100,60,135),(14,136,51,91),(15,92,52,137),(16,138,53,93),(17,94,54,139),(18,140,55,95),(19,96,56,131),(20,132,57,97),(21,90,143,61),(22,62,144,81),(23,82,145,63),(24,64,146,83),(25,84,147,65),(26,66,148,85),(27,86,149,67),(28,68,150,87),(29,88,141,69),(30,70,142,89),(41,122,75,155),(42,156,76,123),(43,124,77,157),(44,158,78,125),(45,126,79,159),(46,160,80,127),(47,128,71,151),(48,152,72,129),(49,130,73,153),(50,154,74,121)], [(1,49,13,66),(2,67,14,50),(3,41,15,68),(4,69,16,42),(5,43,17,70),(6,61,18,44),(7,45,19,62),(8,63,20,46),(9,47,11,64),(10,65,12,48),(21,140,158,118),(22,119,159,131),(23,132,160,120),(24,111,151,133),(25,134,152,112),(26,113,153,135),(27,136,154,114),(28,115,155,137),(29,138,156,116),(30,117,157,139),(31,71,58,83),(32,84,59,72),(33,73,60,85),(34,86,51,74),(35,75,52,87),(36,88,53,76),(37,77,54,89),(38,90,55,78),(39,79,56,81),(40,82,57,80),(91,121,109,149),(92,150,110,122),(93,123,101,141),(94,142,102,124),(95,125,103,143),(96,144,104,126),(97,127,105,145),(98,146,106,128),(99,129,107,147),(100,148,108,130)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,13,12),(2,11,14,9),(3,8,15,20),(4,19,16,7),(5,6,17,18),(21,124,158,142),(22,141,159,123),(23,122,160,150),(24,149,151,121),(25,130,152,148),(26,147,153,129),(27,128,154,146),(28,145,155,127),(29,126,156,144),(30,143,157,125),(31,34,58,51),(32,60,59,33),(35,40,52,57),(36,56,53,39),(37,38,54,55),(41,80,68,82),(42,81,69,79),(43,78,70,90),(44,89,61,77),(45,76,62,88),(46,87,63,75),(47,74,64,86),(48,85,65,73),(49,72,66,84),(50,83,67,71),(91,106,109,98),(92,97,110,105),(93,104,101,96),(94,95,102,103),(99,108,107,100),(111,114,133,136),(112,135,134,113),(115,120,137,132),(116,131,138,119),(117,118,139,140)])

Matrix representation G ⊆ GL8(𝔽41)

400000000
040000000
004000000
000400000
000011090
000001109
0000320300
0000032030
,
27036220000
0271950000
5191400000
22360140000
000018600
0000352300
000000186
0000003523
,
00770000
0034400000
77000000
3440000000
0000004035
000000635
0000403500
000063500
,
0034340000
00170000
77000000
4034000000
0000003540
000000356
0000354000
000035600

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,11,0,32,0,0,0,0,0,0,11,0,32,0,0,0,0,9,0,30,0,0,0,0,0,0,9,0,30],[27,0,5,22,0,0,0,0,0,27,19,36,0,0,0,0,36,19,14,0,0,0,0,0,22,5,0,14,0,0,0,0,0,0,0,0,18,35,0,0,0,0,0,0,6,23,0,0,0,0,0,0,0,0,18,35,0,0,0,0,0,0,6,23],[0,0,7,34,0,0,0,0,0,0,7,40,0,0,0,0,7,34,0,0,0,0,0,0,7,40,0,0,0,0,0,0,0,0,0,0,0,0,40,6,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,35,35,0,0],[0,0,7,40,0,0,0,0,0,0,7,34,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,0,0,0,0,35,35,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,40,6,0,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I···4M5A5B10A···10F10G···10N20A···20L
order122222222444444444···45510···1010···1020···20
size111144442022441010101020···20222···28···84···4

50 irreducible representations

dim111111112222444
type++++++++++++-
imageC1C2C2C2C2C2C2C2D5C4○D4D10D102+ (1+4)D42D5D46D10
kernelC42.168D10C20.6Q8C42⋊D5D4×Dic5C23.18D10C202D4Dic5⋊D4C5×C41D4C41D4C20C42C2×D4C10C4C2
# reps1112424124212248

In GAP, Magma, Sage, TeX

C_4^2._{168}D_{10}
% in TeX

G:=Group("C4^2.168D10");
// GroupNames label

G:=SmallGroup(320,1391);
// by ID

G=gap.SmallGroup(320,1391);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,675,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽